From Monday's session, some links
- John Hopfield's personal history of forming Caltech's Computation and Neural Systems program (CNS) https://drive.google.com/open?id=0BzvXOhBHjRheQmNPcUJuVzB4dHM
- Very recent paper on increasing gap between memory and compute for DNN "edge" inference, has useful trend plotshttps://drive.google.com/open?id=1DvlRMU-xIMhIOLzx2uozkIwH5oxrmhLU , Xu, X., Ding, Y., Hu, S. X., Niemier, M., Cong, J., Hu, Y., et al. (2018). Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222. doi:10.1038/s41928-018-0059-3.
- Our paper on our NullHop CNN accelerator, accepted to IEEE TNNLS https://drive.google.com/open?id=10FdVx-VRZ4Q26st0vVQz8k-Mw95f2hCR,Aimar, A., Mostafa, H., Calabrese, E., Rios-Navarro, A., Tapiador-Morales, R., Lungu, I.-A., et al. (2018). NullHop: A Flexible Convolutional Neural Network Accelerator Based on Sparse Representations of Feature Maps. IEEE Trans. on Neural Networks and Learning Systems TNNLS) accepted.
Comments
Post a Comment